

**Institute Name & Code:** K. K. Wagh Polytechnic, Nashik (0078)

**Program and Code:** Electrical Engineering (EE)

**Course Name:** Fundamentals of Electrical Engineering

**Semester:** II      **Scheme:** 'K'    **Allocated Hrs:** 60

**Course Index:** 204

**Course Code:** 312310

**Name of Faculty:** Mr.J.M.Patil

**Class: FYEE-Ohm**

\*\*\*\*\*

**• TEACHING-LEARNING & ASSESSMENT SCHEME:**

| Course Code | Course Title                          | Abbr | Course Category/s | Learning Scheme          |     |     |     | Credits | Paper Duration | Assessment Scheme |     |       |                  |       |     |       |             | Total Marks |           |  |
|-------------|---------------------------------------|------|-------------------|--------------------------|-----|-----|-----|---------|----------------|-------------------|-----|-------|------------------|-------|-----|-------|-------------|-------------|-----------|--|
|             |                                       |      |                   | Actual Contact Hrs./Week |     |     | SLH | NLH     |                | Theory            |     |       | Based on LL & TL |       |     |       | Based on SL |             |           |  |
|             |                                       |      |                   | CL                       | TL  | LL  |     |         |                | FA-TH             |     | SA-TH | Total            | FA-PR |     | SA-PR |             |             |           |  |
|             |                                       |      |                   | Max                      | Max | Max |     |         |                | Max               | Min | Max   | Min              | Max   | Min | Max   | Min         |             |           |  |
| 312310      | FUNDAMENTAL OF ELECTRICAL ENGINEERING | FEE  | DSC               | 4                        | -   | 4   | 2   | 10      | 5              | 3                 | 30  | 70    | 100              | 40    | 25  | 10    | 25#         | 10          | 25 10 175 |  |

**Total IKS Hrs for Sem. : 0 Hrs**

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS – Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, \*# On Line Examination, @\\$ Internal Online Examination

**Note:**

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL) hrs.\* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. \* Self learning hours shall not be reflected in the Time Table.
7. \* Self learning includes micro project / assignment / other activities.

**• Course Objectives:**

- CO1 - Determine various parameters used in electric circuit.
- CO2 - Use basic laws of electrical engineering in D.C. Circuits.
- CO3 - Use capacitor and battery in electrical circuits.
- CO4 - Use principles of magnetism in Magnetic Circuits.
- CO5 - Apply Laws of electromagnetism in electrical circuit and systems.

- **Course Outcomes (COs) and Theory Learning Outcomes(TLO): Theory :**
- By learning course Fundamentals of Electrical Engineering (FEE-312310), First Year students will be able to:

| CO No.         | CO No. | Course Outcomes (COs) / Unit Outcomes (UOs)                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CO204.1</b> | CO1    | <p><b>Determine various parameters used in electric circuit</b></p> <p>TLO 1.1 Interpret the given electric parameters.</p> <p>TLO 1.2 Explain the given terms of electric circuit.</p> <p>TLO 1.3 Explain the given effect of the electric current</p> <p>TLO 1.4 Calculate work, power and energy for the given circuit.</p>                                                                                                                          |
| <b>CO204.2</b> | CO2    | <p><b>Use of basic laws of electrical engineering in DC circuits.</b></p> <p>TLO 2.1 Apply Ohm's law to calculate internal resistance of the given circuit.</p> <p>TLO 2.2 Calculate equivalent resistance for the given circuit.</p> <p>TLO 2.3 Categorize the given type of network</p> <p>TLO 2.4 Apply the Kirchhoff's current law and Kirchhoff's voltage law to calculate the electrical quantities in the given circuit.</p>                     |
| <b>CO204.3</b> | CO3    | <p><b>Use capacitor and battery in electrical circuits</b></p> <p>TLO 3.1 Describe the construction of the given type of capacitor.</p> <p>TLO 3.2 Explain the working of the capacitor in the given circuit.</p> <p>TLO 3.3 Calculate equivalent capacitance in the given D.C. circuit.</p> <p>TLO 3.4 Define Battery and state its types and connections</p> <p>TLO 3.5 Plot charging and discharging curves for the given capacitor and battery.</p> |
| <b>CO204.4</b> | CO4    | <p><b>Use principles of magnetism in Magnetic Circuits.</b></p> <p>TLO 4.1 Interpret the terms related to a magnetic circuit.</p> <p>TLO 4.2 Calculate various parameters of the given magnetic circuit.</p> <p>TLO 4.3 Compare the series and parallel magnetic circuit based on the given criteria.</p> <p>TLO 4.4 Plot B-H curve and hysteresis loop of the given magnetic materials.</p>                                                            |
| <b>CO204.5</b> | CO5    | <p><b>Apply Laws of electromagnetism in electrical circuit and systems.</b></p> <p>TLO 5.1 Describe the use of Faraday's laws of electromagnetic induction in the given application.</p> <p>TLO 5.2 Distinguish between the given type of e.m.fs.</p> <p>TLO 5.3 Apply Faraday's laws to calculate induced e.m.f. in the given circuit.</p> <p>TLO 5.4 Calculate self-inductance and energy stored in the magnetic field of the given circuit.</p>      |

- **Teaching Plan:**

| Unit No. (Allotted Hrs.) | Teaching Learning Outcome | Title/Topic Details and Course Outcome (CO)                                                                                                                                                                                                                                                                                    | Plan (From-To & No. of Lectures)       | Actual Execution (From-To & No. of Lectures) | Teaching Method/ Media/ Tools    | Remark |
|--------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------|--------|
| <b>01. (10)</b>          | TLO1.1<br>TLO1.2          | <p><b>Determine various parameters used in electric circuit [CO204.1]</b></p> <p>1.1 Direct Current (DC), Alternating Current (AC)</p> <p>Voltage Source: Ideal and Practical, Current Source: Ideal and Practical</p> <p>1.2 Electric Current, Electric Potential, Potential Difference (PD), Electro-Motive-Force (EMF).</p> | 16/12/2025<br>To<br>20/12/2025<br>(04) |                                              | PPT, Black Board, YouTube Videos |        |
|                          | TLO1.4                    | 1.3 Electrical Work, Power and Energy.                                                                                                                                                                                                                                                                                         | 23/12/2025<br>To<br>24/12/2025<br>(02) |                                              | PPT, Black Board, YouTube Videos |        |

|             |        |                                                                                                                                                                                                                                         |                                        |  |                                  |  |
|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|----------------------------------|--|
|             | TLO1.2 | 1.4 Resistance, Resistivity, conductivity<br>Effect of Temperature on Resistance<br>1.5 Types of Resistor and Application                                                                                                               | 26/12/2025<br>To<br>30/12/2025<br>(03) |  | PPT, Black Board, YouTube Videos |  |
|             | TOL1.3 | 1.6 Heating Effect, Magnetic effect<br>Chemical effect of Electric current                                                                                                                                                              | 31/12/2025<br>To<br>02/01/2026<br>(02) |  | PPT, Black Board, YouTube Videos |  |
| 02.<br>(12) | TLO2.1 | <b>Use basic laws of electrical engineering in D.C. Circuits [CO204.2]</b><br>2.1 Ohm's Law, Internal resistance of source<br>Internal voltage drop, Terminal Voltage                                                                   | 03/01/2026<br>To<br>09/01/2026<br>(04) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO2.2 | 2.2 Resistance in Series and Resistance in Parallel                                                                                                                                                                                     | 10/01/2026<br>To<br>16/01/2026<br>(04) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO2.3 | 2.3 Active, Passive Circuit, Linear, Non-linear Circuit ,Unilateral and Bi-lateral Circuit, Passive and Active Network, Node, Branch, Loop, Mesh                                                                                        | 17/01/2026<br>To<br>20/01/2026<br>(02) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO2.4 | 2.4 Kirchhoff's Current Law and Kirchhoff's Voltage Law                                                                                                                                                                                 | 21/01/2026<br>To<br>30/01/2026<br>(04) |  | PPT, Black Board, YouTube Videos |  |
| 03.<br>(12) | TLO3.1 | <b>Use capacitor and battery in electrical circuits [CO204.3]</b><br>3.1 Capacitor, Parallel Plate Capacitor.                                                                                                                           | 31/01/2026<br>to<br>31/01/2026<br>(01) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.3 | 3.2 Various connections of capacitor                                                                                                                                                                                                    | 03/02/2026<br>to<br>06/02/2026<br>(02) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.2 | 3.3 Energy Stored in Capacitor                                                                                                                                                                                                          | 07/02/2026<br>to<br>07/02/2026<br>(01) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.5 | 3.4 Charging and Discharging of Capacitor,<br>3.5 Breakdown voltage and Di-electric Strength                                                                                                                                            | 10/02/2026<br>to<br>13/02/2026<br>(03) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.2 | 3.6 Types of Capacitor and Application of Capacitor.                                                                                                                                                                                    | 14/02/2026<br>to<br>14/02/2026<br>(01) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.4 | 3.7 Types of battery, Construction, series and parallel connection of Battery                                                                                                                                                           | 17/02/2026<br>to<br>18/02/2026<br>(02) |  | PPT, Black Board, YouTube Videos |  |
|             | TLO3.5 | 3.8 Charging and Discharging of Capacitor and battery                                                                                                                                                                                   | 20/02/2026<br>to<br>21/02/2026<br>(02) |  | PPT, Black Board, YouTube Videos |  |
| 04.<br>(12) | TLO4.1 | <b>Use principles of magnetism in Magnetic Circuits (CO204.4)</b><br>4.1 Magnetic lines of force, Flux, flux density<br>Magnetic flux intensity, Magneto-Motive-Forces (MMF), Ampere Turns (AT),<br>Reluctance, Permeance, reluctivity. | 24/02/2026<br>to<br>24/02/2026<br>(01) |  | PPT, Black Board, YouTube Videos |  |

|          |        |                                                                                                                                                                                   |                               |  |                                  |  |
|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|----------------------------------|--|
|          | TLO4.1 | 4.2 Electric and Magnetic circuit , Series Magnetic Circuit and Parallel Magnetic Circuit                                                                                         | 27/02/2026 to 04/03/2026 (04) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO4.3 | 4.3 Electric and Magnetic circuit: Series Magnetic and Parallel Magnetic Circuit                                                                                                  | 06/03/2025 to 07/03/2025 (02) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO4.4 | 4.4 Magnetization Curve (B-H Curve)                                                                                                                                               | 10/03/2026 to 10/03/2026 (01) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO4.4 | 4.5 Magnetic Hysteresis, Hysteresis Loop, Applications.                                                                                                                           | 11/03/2026 to 17/03/2026 (04) |  | PPT, Black Board, YouTube Videos |  |
| 05. (14) | TLO5.1 | Apply Laws of electromagnetism in electrical circuit and systems [CO402.5]<br>5.1 Development of Induced e.m.f. and Current, Faraday's Laws of Electromagnetic Induction.         | 18/03/2026 to 20/03/2026 (02) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO5.2 | 5.2 Static and dynamic emf, Lenz's Law Fleming's Right hand rule..                                                                                                                | 21/03/2026 to 27/03/2026 (04) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO5.3 | 5.3 Self-Inductance, Coefficient of Self Inductance, Mutual inductance, Coefficient of Mutual inductance (M),Self-induced e.m.f. Mutually induced e.m.f, Coefficient of Coupling. | 28/03/2026 to 30/03/2026 (04) |  | PPT, Black Board, YouTube Videos |  |
|          | TLO5.4 | 5.4 Inductance in series<br>5.5 Types of inductor Application of inductor, Energy Stored in Magnetic Field..                                                                      | 01/04/2026 to 04/04/2026 (04) |  | PPT, Black Board, YouTube Videos |  |
|          |        | Total                                                                                                                                                                             | 60                            |  |                                  |  |

- **Unit wise CO Mapping:**

|                  | CO204.1 | CO204.2 | CO204.3 | CO204.4 | CO204.5 |
|------------------|---------|---------|---------|---------|---------|
| <b>Chapter 1</b> | ✓       |         |         |         |         |
| <b>Chapter 2</b> | ✓       | ✓       |         |         |         |
| <b>Chapter 3</b> | ✓       |         | ✓       |         |         |
| <b>Chapter 4</b> | ✓       |         |         | ✓       |         |
| <b>Chapter 5</b> | ✓       |         |         |         | ✓       |

- **Direct Assessment Criteria:**

- **Rules for Theory Assessment:**

1. Unit wise Offline test out of 30 marks will be conducted after completion of each unit.
2. Assignment on each unit will be given to the students after completion of Unit; students have to upload the solved assignment on Google Classroom/submit the same to teacher.
3. Total weightage of Theory Marks to the Course is 100. From 100 Marks 70 Marks are allotted to MSBTE TH Examination and 30 Marks are allotted to Formative Assessment (FR TH) for which Two Class tests of 30 marks each will be conducted during semester as per the guidelines of MSBTE.

- Self-Learning Assessment of 25 Marks is planned to be undertaken by students to facilitate integration of COs, TLOs and LLOs through Micro project/Activities/ Assignments based on Course Outcome requirements.
- End Semester Theory Examination of 70 marks will be conducted by MSBTE at the end of semester. The schedule of MSBTE Examinations will be announced by MSBTE on the website [www.msbte.com](http://www.msbte.com).

• **Rules for Practical Assessment:**

- Progressive assessment of each practical is based on Process related (15 marks) and Product related (10 marks) - Total out of 25 marks as per the assessment scheme prescribed in manual given by MSBTE, Mumbai.
- The Performance Indicators of each practical is assessed according to product and process related skills. Sample format given below:

***Assessment Scheme for Each Practical:***

| Sr. No                           | Performance Indicators                                 | Weightage in % |
|----------------------------------|--------------------------------------------------------|----------------|
| <b>Process Related(15 Marks)</b> |                                                        | <b>60%</b>     |
| 1                                | Effective Practical Implementation with Specified Time | 25%            |
| 2                                | Effective Handling of Network Component                | 25%            |
| 3                                | Follow Ethical Practices                               | 10%            |
| <b>Product Related(10 Marks)</b> |                                                        | <b>40%</b>     |
| 4                                | Correctness of Practical Implementation                | 15%            |
| 5                                | Timely Submission OF Practical                         | 15%            |
| 6                                | Answer to Sample Question                              | 10%            |
| <b>Total(25 Marks)</b>           |                                                        | <b>100%</b>    |

- Final Formative Assessment (FR PR) of 25 marks is calculated based on Progressive Assessment for each experiment.

$$\text{Formative Assessment Marks} = ((\text{Total Marks Obtained in P.A.}) / (25 * \text{Total Number of Experiments})) * 25$$

- A comprehensive Final Practical Summative Assessment Semester examination (of 25 Marks) will be conducted by MSBTE at the end of semester. Examiner for this examination External Examiner will be appointed by MSBTE. The schedule of MSBTE Practical Examination will be display on Notice board prior to examination

• **References:**

1. **Books :**

| Sr. No | Title                                  | Author          | Publisher                                                        |
|--------|----------------------------------------|-----------------|------------------------------------------------------------------|
| 01     | Basic Electrical Engineering           | Mittal V.N.     | Tata McGraw Hill Education.<br>New Delhi<br>ISBN : 9789129214405 |
| 02     | Electrical Technology Vol-I            | Theraja B.L.    | S.Chand and Co.Ltd., New Delhi ISBN : 9788121924375              |
| 03     | Electrical Technology                  | Edward Hughes   | Pearson Publications., New Delhi<br>ISBN : 9788120329973 Vi      |
| 04     | Fundamentals of Electrical Engineering | Saxsena S.B.Lal | Cambridge University Press , New Delhi<br>ISBN 9781107464353     |

**2. Web References:**

1. <https://www.nptel.ac.in>
2. <https://www.wikipedia.com>
3. <https://www.electricaltechnology.org>
4. <https://www.howstuffworks.com>
5. <https://www.electrical4u.com>

**3. URLs of Referred Videos :**

1. [.https://youtu.be/JMjqizv98bw](https://youtu.be/JMjqizv98bw)
2. [https://youtu.be/j4b\\_fzvG4DY](https://youtu.be/j4b_fzvG4DY)
3. <https://youtu.be/LhkJxkz-NAI>
4. <https://youtu.be/oVuRa4dW7Gg>
5. [https://youtu.be/eVRu8rKQ\\_Mo](https://youtu.be/eVRu8rKQ_Mo)
6. <https://www.electrical4u.com/electrical-engineering-articles/basic-electrical/> Basic Electrical Parameters
7. [https://en.wikipedia.org/wiki/Electric\\_battery](https://en.wikipedia.org/wiki/Electric_battery)
8. <https://www.britannica.com/science/Magnetic-Circuits>
9. [https://en.wikipedia.org/wiki/Electromagnetic\\_induction](https://en.wikipedia.org/wiki/Electromagnetic_induction) Electromagnetic Induction

**4. Tools:** Google Classroom , MKCL ERA LIVE

Mr.J.M.Patil

Mr.S.B.Pawar

(Name & signature of staff)

CC: Course File

(Name & signature of HOD)